I have been implementing a fixed-effects estimator in Python so I can work with data that is too large to hold in memory. To make sure I was calculating my coefficients and standard errors correctly I have been comparing the calculations of my Python code to results from Stata. This lead me to find a surprising inconsistency in Stata’s calculation of standard errors. I illustrate the issue by comparing standard errors computed by Stata’s xtreg fe command to those computed by the standard regress command. To start, I use the first hundred observations of the nlswork dataset:

. webuse nlswork, clear
(National Longitudinal Survey.  Young Women 14-26 years of age in 1968)

. keep if _n <= 100
(28434 observations deleted)

I then estimate a fixed-effects model using regress:

. regress ln_w age tenure i.idcode, vce(cluster idcode)

Linear regression                                      Number of obs =      99
                                                       F(  1,     8) =       .
                                                       Prob > F      =       .
                                                       R-squared     =  0.5172
                                                       Root MSE      =  .26493

                                 (Std. Err. adjusted for 9 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .0025964   .0159834     0.16   0.875    -.0342613    .0394541
      tenure |   .0356595      .0165     2.16   0.063    -.0023896    .0737086
             |
      idcode |
          2  |  -.4282753   .0207949   -20.60   0.000    -.4762285   -.3803222
          3  |  -.5313624   .0531705    -9.99   0.000    -.6539738    -.408751
          4  |  -.1054791   .0862957    -1.22   0.256    -.3044774    .0935192
          5  |  -.1976049   .0275788    -7.17   0.000    -.2612016   -.1340081
          6  |  -.4590234   .0484582    -9.47   0.000    -.5707681   -.3472787
          7  |  -.7201447   .0362701   -19.86   0.000    -.8037837   -.6365058
          9  |  -.2538001   .1237821    -2.05   0.074    -.5392421     .031642
         10  |  -.5417859   .1337093    -4.05   0.004    -.8501201   -.2334518
             |
       _cons |   1.922783   .4005497     4.80   0.001     .9991134    2.846452
------------------------------------------------------------------------------

For comparison, I estimate the same model using xtreg fe:

. xtset idcode
       panel variable:  idcode (unbalanced)

. xtreg ln_w age tenure, fe vce(cluster idcode)

Fixed-effects (within) regression               Number of obs      =        99
Group variable: idcode                          Number of groups   =         9

R-sq:  within  = 0.2358                         Obs per group: min =         3
       between = 0.1373                                        avg =      11.0
       overall = 0.1740                                        max =        15

                                                F(2,8)             =     14.98
corr(u_i, Xb)  = -0.0963                        Prob > F           =    0.0020

                                 (Std. Err. adjusted for 9 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .0025964   .0153029     0.17   0.869    -.0326922    .0378849
      tenure |   .0356595   .0157976     2.26   0.054    -.0007698    .0720888
       _cons |   1.583834   .3793026     4.18   0.003     .7091607    2.458508
-------------+----------------------------------------------------------------
     sigma_u |  .23415096
     sigma_e |  .26492811
         rho |  .43856575   (fraction of variance due to u_i)
------------------------------------------------------------------------------

Notice that the coefficients on age and tenure match perfectly across the two regressions, but the standard errors calculated by xtreg fe are smaller. This is due to a difference in the degrees of freedom adjustment used. regress counts the fixed effects as coefficients estimated, while xtreg fe by default does not. As Kevin Goulding explains here, clustered standard errors are generally computed by multiplying the estimated asymptotic variance by (M / (M - 1)) ((N - 1) / (N - K)). M is the number of individuals, N is the number of observations, and K is the number of parameters estimated. The standard regress command correctly sets K = 12, xtreg fe sets K = 3. Making the asymptotic variance (99 - 12) / (99 - 3) = 0.90625 times the correct value.

To get the correct standard errors from xtreg fe use the dfadj option:

. xtreg ln_w age tenure, fe vce(cluster idcode) dfadj

Fixed-effects (within) regression               Number of obs      =        99
Group variable: idcode                          Number of groups   =         9

R-sq:  within  = 0.2358                         Obs per group: min =         3
       between = 0.1373                                        avg =      11.0
       overall = 0.1740                                        max =        15

                                                F(2,8)             =     13.73
corr(u_i, Xb)  = -0.0963                        Prob > F           =    0.0026

                                 (Std. Err. adjusted for 9 clusters in idcode)
------------------------------------------------------------------------------
             |               Robust
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .0025964   .0159834     0.16   0.875    -.0342613    .0394541
      tenure |   .0356595      .0165     2.16   0.063    -.0023896    .0737086
       _cons |   1.583834   .3961687     4.00   0.004     .6702675    2.497401
-------------+----------------------------------------------------------------
     sigma_u |  .23415096
     sigma_e |  .26492811
         rho |  .43856575   (fraction of variance due to u_i)
------------------------------------------------------------------------------

This seems like an option that could be missed easily.