My sister’s boyfriend’s band, Vertigo Drift, recently came out with a new EP called Phase 3. It seemed like the perfect excuse for me to play around with gganimate to create a music video.

Reading Audio Files

The tuneR package provides excellent functions for reading audio files.

Let’s download an example wave file.

url <- "http://freewavesamples.com/files/Alesis-Fusion-Acoustic-Bass-C2.wav"
command <- paste("wget", url)
system(command)

Let’s use tuneR to read the file.

library(tuneR)

wave <- readWave("Alesis-Fusion-Acoustic-Bass-C2.wav")
wave
## 
## Wave Object
## 	Number of Samples:      127782
## 	Duration (seconds):     2.9
## 	Samplingrate (Hertz):   44100
## 	Channels (Mono/Stereo): Stereo
## 	PCM (integer format):   TRUE
## 	Bit (8/16/24/32/64):    16

This particular file is 2.9 seconds long. It is recorded in stereo (it has a left and right channel). There are 44,100 samples per second. In total there are 127,782 samples. I found Wikipedia’s page on digital audio to be pretty helpful in understanding this data.

Plotting Audio Files

Let’s put the audio data into a data frame.

library(tidyverse)

data <- data.frame(
    Left = wave@left,
    Right = wave@right
)
data$second <- (1:nrow(data)) / wave@samp.rate
head(data)
##   Left Right       second
## 1 -127  -145 2.267574e-05
## 2 -126  -135 4.535147e-05
## 3 -149  -176 6.802721e-05
## 4 -175  -213 9.070295e-05
## 5 -165  -200 1.133787e-04
## 6 -143  -161 1.360544e-04

Typical video contains 24 frames per second. Let’s focus on the first 24th of a second of this audio file.

data <- data %>%
    filter(second <= 1 / 24)
nrow(data)
## [1] 1837

Now let’s plot this 24th of a second.

data %>%
    gather(key = "Channel", value = "y", Left, Right) %>%
    mutate(y = y / max(abs(y))) %>%
    ggplot(aes(x = second, y = y)) +
    geom_point(size = 0.1) +
    ylab("Relative Amplitude") +
    xlab("Time (Seconds)") +
    ylim(-1, 1) +
    facet_grid(Channel ~ .) +
    theme_bw()

Animating Plots

I used gganimate to create the following music video. The song is 2 minutes and 46 seconds long so the video stitches together (2 * 60 + 46) * 24 = 3984 plots. If I watch it for too long it starts to hurt my eyes.

Let me know if you’re interested in the code. I haven’t posted it on GitHub yet, but I’d be happy to.